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Abstract

Thermo-mechanical vibration analysis of functionally graded (FG) beams and functionally graded sandwich (FGSW)

beams are presented. The functionally graded material (FGM) beams are considered to be resting on variable (i) Winkler

foundation and (ii) two-parameter elastic foundation. The material properties of these beams are assumed to be varying in

the thickness direction. The governing differential equations for beam vibration are being solved using the modified

differential quadrature method (MDQM). The applied kinematic boundary conditions are implemented using the modified

weighting coefficient matrix (MWCM). The weighting coefficients are generated from the Chebyshev basis function.

Present results for the vibration of isotropic beam with variable Winkler foundation are in good agreement with those

reported in the literature. Parametric study on the vibration response of FG beams and FGSW beams are being

investigated. These parameters include (i) temperature distributions, (ii) power-law index, (iii) variable Winkler foundation

modulus, (iv) two-parameter elastic foundation modulus and (v) normalized core thickness of FGSW beams.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded (FG) structures are found in space vehicles, aircrafts, automobiles, nuclear power
plants, combustion chambers and turbine blades, etc. These structures are often subjected to vibration with
thermal and dynamic loadings. The loadings include large temperature gradients, thermo-elastically induced
loading and dynamic pressure. For example, in space shuttle, during re-entry into the earth’s atmosphere,
functionally graded material (FGM) tiles are utilized as heat shields. These tiles are made up of ceramic and
metal and thus provide simultaneously thermal protection and load-carrying capability. FGMs are also used
as a spacer for gas-insulated power equipment. Furthermore, ceramic–metal FGM are applied on the dual
friction pair of green automobiles. Hence, it is important to study the structural response of FG structures
under thermo-elastic loading.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-section area of beam
Aij,Bij,Cij,Dij first-, second-, third- and fourth-

order weighting coefficients
Afgm in-plane stiffness of the FGM beam
Bfgm bending–stretching coupling stiffness of

the FGM beam
Dfgm bending stiffness of the FGM beam
E1,E2 Young’s moduli of materials 1 and 2
Efgm Young’s modulus of FGM beam
h thickness of FGM beam
k Winkler elastic modulus
k1 second parameter elastic modulus
kT1,kT2 coefficients of thermal conductivity of

materials 1 and 2
kfgm coefficient of thermal conductivity of

FGM beam
L length of beam
M bending moment resultant of beam
n no. of interpolation points
N axial force resultant of beam
N0 matrix of Chebyshev polynomial element
Rn power-law index
Rt core thickness ratio of sandwich beam
t time variable
T temperature

T(294–1500–294) T1 ¼ 294K, T2 ¼ 1500K and
T3 ¼ 294K

Tn(x) nth Chebyshev polynomial of first kind
Vf volume fraction of FGM beam
W(x) mode shape of FGM beam
w(x,t) deflection of beam
x0, x1, .., xn interpolation points
z thickness coordinate

Greek letters

b non-dimensional frequency parameter
e0 extensional strain
k bending strain
m sinusoidal variation parameter of elastic

foundation
n1,n2 Poisson’s ratios of materials 1 and 2
nfgm Poisson’s ratio of FGM material
x parabolic variation parameter of elastic

foundation
r1,r2 densities of materials 1 and 2
rfgm density of FG material
c linear variation parameter of elastic

foundation
o natural frequency of beam
ō non-dimensional natural frequency of

beam
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FGM have the properties that could vary in several suitable directions [1]. The mechanical properties of
these materials are often being represented in the form of a series [2] and power-law index variations [3,4]. In
these graded materials, there is a smooth and continuous variation of material properties across the thickness.
This leads to no stress concentration and better fatigue life. Fundamental theories of FGM could be found in
the paper of Suresh and Morton [5].

Various studies on FGM materials under thermo-mechanical environment are found in the literature.
Praveen and Reddy [6] carried out thermo-elastic analysis of FG plates. They investigated the static and
dynamic response of the FGM plates by varying the volume fraction of the ceramic and metallic constituents
using the simple power-law distribution. Reddy and Cheng [7] studied the three-dimensional distribution of
displacement and stresses of smart FG plates. Librescu et al. [8] studied the behavior of thin-walled beams
made of FGM operating at high temperatures, which included vibration and instability analysis with effects of
volume fraction, temperature gradients, etc. Review on various investigations of FGM including thermo-
mechanical studies are found in Birman and Byrd [9].

Sandwich structures are often found in aerospace application such as in skin of wings, vertical fin torque
box, aileron, spoilers, etc. The advantages of these structures are that it provides high specific stiffness and
strength for a low-weight consideration. To maintain minimum weight for a given thermo-mechanical loading
condition, FGM could be incorporated in the sandwich construction. Though there are research works
reported on general sandwich structures, studies related to FGM sandwich (FGSW) structures are few in
numbers. Li et al. [10] reported free vibration response of FGSW rectangular plates based on the three-
dimensional elasticity theory. Their work included sandwich structures with FGM face sheet as well as with
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FGM core. Zenkour [11] carried out stress analysis of FG ceramic–metal sandwich plates. Later Zenkour [12]
reported buckling and vibration studies of sandwich plates. Venkataraman and Sankar [13] carried out
analysis of sandwich beams with FG core where the face sheets were assumed to be isotropic and the core
elastic coefficients were assumed to vary exponentially. The Euler–Bernoulli theory was employed for the
analysis of face sheets.

The governing differential equations of FGM materials are solved by conventional methods. Sankar [14]
obtained elasticity solution for simply supported functionally gradient beams subjected to sinusoidal
transverse loading. In his paper, he developed a Euler–Bernoulli model of FG beam. Zhu and Sankar [15] used
the Fourier-series-Galerkin method to obtain approximate solutions and computed displacements and stresses
in a FG beam. Employing the finite element method, Chakroborty et al. [16] studied thermo-elastic effect and
wave propagation in FGM beams. Zhong and Yu [17] carried out analytical work for a cantilever FGM beam.
Bhangale and Ganesan [18] carried out thermo-elastic buckling and vibration behavior of FG sandwich beam
using the finite element method.

Beam structures are often found to be resting on earth in various engineering applications. These include
railway lines, geotechnical areas, highway pavement, building structures, offshore structures, transmission
towers and transversely supported pipe lines. This motivated many researchers to analyze the behavior of
beam structures on various elastic foundations.

Studies on homogenous isotropic beams resting on variable Winkler foundation are found in various
papers. Zhou [19] studied vibration of a uniform single span beam resting on variable Winkler elastic
foundation. Employing the finite element method, Thambiratnam and Zhuge [20] studied the free vibration
analysis of beams resting on elastic foundations. Au et al. [21] considered a Euler–Lagrangian approach with
C1 continuity functions for the vibration and stability analyses of non-uniform beams resting on elastic
foundation. For two-parameter elastic foundation, Matsunaga [22] studied the linear vibration of non-
prismatic beams resting on two-parameter elastic foundations. Ying et al. [23] presented solutions for bending
and free vibration of FG beams resting on a Winkler–Pasternak elastic foundation based on the
two-dimensional theory of elasticity. However, works related to FGSW beam on variable Winkler foundation
is limited in literature.

The differential quadrature method (DQM) is found to be a simple and efficient numerical technique for
solving partial differential equations as reported by Bellman et al. [24]. Better convergence behavior is
observed by DQM compared with its peer numerical competent techniques viz. the finite element method, the
finite difference method, the boundary element method and the meshes less technique. Usually in these
numerical techniques, accuracy improves with p, h and p–h refinements. However, in case of the present DQM
technique, a smaller number of interpolation points are adequate to yield reasonably accurate results. In the
present study, the Chebyshev polynomial of first kind [25] is employed in deriving the weighting coefficient
matrix. For the imposition of boundary conditions of the structural problems, the delta method was originally
employed by Bert et al. [26]. In this delta method, the boundary conditions are applied both at the beam
boundaries and at a small distance ‘delta’ away from the boundaries. Though this implementation of
boundary conditions is conceptually simple, this could not yield satisfactory results for boundary conditions
other than the clamped–clamped boundary condition. Moreover, with very small ‘delta’ values, the results are
found to be oscillating in nature. To remove the above drawback modified differential quadrature method
(MDQM) approach is tried. Wang and Bert [27] employed a MDQM approach where all types of boundary
conditions could be imposed exactly at the boundaries. In this new approach, during the formulation of
weighting coefficients, the boundary conditions are incorporated. This approach is known as the modified
weighting coefficient matrix (MWCM) method. Shu and Du [28] introduced the generalized differential
quadrature (GDQ) method by substituting boundary conditions into the governing equations. It is found that
MWCM yielded accurate results as compared with the delta method and the GDQ method for the same
number of interpolation points. However with the GDQ method, clamped–clamped boundary condition is
better handled. Though DQM is a simple and efficient numerical technique and has better convergence
behavior, very few research work with MDQM application to the analysis of FGMs are available. Pradhan
and Murmu [29] studied the flexural response of FG beams and sandwich structures using differential
quadrature. They employed Chebyshev polynomial and the modified weight coefficient matrix method for
determination of weighting coefficients and implication of boundary condition, respectively. Using the DQM,
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Fazelzadeh et al. [30] carried out vibration analysis of FG thin-walled rotating blades under high-temperature
supersonic flow.

From the literature study, it is found that pure mechanical interaction of FGMs and elastic foundations is
an important issue. This aspect is not being fully addressed in literature. Thus in the present paper, thermo-
mechanical vibration analysis of FG beams and FGSW beams resting on variable elastic foundation is carried
out. The variable elastic foundations include variable Winkler foundation and two-parameter elastic
foundation. Linear, parabolic and sinusoidal distributions of Winkler foundation moduli along the axial
direction are considered for the analyses. The governing differential equations for beam vibration are being
solved using the MDQM. The applied kinematic boundary conditions are implemented using the MWCM.
The weighting coefficients are generated from the Chebyshev basis function. The Euler beam theory can be
extended for long and thin FGM beams [14] and FG sandwich beams [31]. In the present study, Euler beam
displacement distribution theory is considered for the case of single and sandwich beam resting on variable
Winkler foundation and two-parameter elastic foundations. The present MDQM results for homogeneous
beams on elastic foundations are validated with those available in literature. Present results for vibration of
isotropic beam with variable Winkler foundation are in good agreement with those reported in the literature.
Effect of (i) temperature distributions, (ii) power-law index, (iii) variable Winkler foundation modulus,
(iv) two-parameter elastic foundation modulus and (v) normalized core thickness of FGSW beams on the
vibration response of FGM beam and FG sandwich beam are carried out and discussed.

2. Formulations

2.1. FGMs

FGM beam is assumed to be consisting of N equal size layers in the thickness direction. Each layer is
considered to be in a plane stress state. The principal direction coincides with the 1 and 2 directions. The
corresponding thermo-elastic constitutive law for the kth layer is expressed as
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where Qij are the stiffness of the FGM beam at the kth layer and are given as

Q11 ¼
Efgm

1� n2fgm
; Q12 ¼

nfgmEfgm

1� n2fgm
; Q66 ¼

Efgm

2½1þ nfgm�
; ā ¼

Efgma
1� nfgm

(2)

Most of the FGMs are being used in high-temperature environment and their material properties are
temperature dependent. A typical material property Pi can be expressed as a function of the environment
temperature T [3]:

Pi ¼ P0ðP�1T�1 þ 1þ P1T þ P2T
2 þ P3T3Þ (3)

where P0, P�1, P1, P2 and P3 are temperature coefficients and are constants for a specific FGM constituent
material. The material property Pfgm of FGM is controlled by volume fractions Vfi and individual material
properties Pi of the constituent materials [3]:

Pfgm ¼
Xnm
i¼1

PiV fi (4)

In the present case, two different materials (nm ¼ 2) are particle mixed to form the FGM material.
Assuming there are no voids and no foreign particles in the FGM material, sum of the volume fractions of all
the constituent materials is unity:

Xnm
i¼1

V fi ¼ 1 (5)
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For example, metal and ceramic materials (nm ¼ 2) are mixed to form the FGM beam. Volume fractions of
metal Vm and ceramic Vc materials are defined as

V m ¼
h� 2z

2h

� �Rn

; �h=2pzph=2

V c ¼ 1� V m (6)

where z and h represents the thickness coordinate and the thickness of the beam, respectively. The term Rn

denotes the power-law index (0pRnpN). Here, volume fraction of the metal material Vm varies from 100%
to 0% as z varies from �h/2 to h/2. Similarly volume fraction of the ceramic material Vc varies from 0% to
100% as z varies from �h/2 to h/2. For various Rn values, the average volume fractions of metal Vm and
ceramic Vc materials are depicted in Ref. [3]. Young’s modulus, density, Poisson’s ratio and coefficient of
thermal conductivity of FGM beam made up of two different materials are expressed as

Efgm ¼ ðE2 � E1Þ
2zþ h

2h

� �Rn

þ E1

rfgm ¼ ðr2 � r1Þ
2zþ h

2h

� �Rn

þ r1

nfgm ¼ ðn2 � n1Þ
2zþ h

2h

� �Rn

þ n1

kfgm ¼ ðkT2 � kT1Þ
2zþ h

2h

� �Rn

þ kT1 (7)

2.2. FGM beam
In the present work, Euler–Bernoulli beam theory (EBT) for FGM beam is considered [14]. Thus, the beam
thickness is assumed to be small and the shear deformation contribution is being neglected. It is assumed that
the plane sections normal to the beam axis remain normal and plane after deformation. Furthermore, it is
assumed that the thickness of the beam remains unchanged, i.e. displacement w is independent of z. The EBT
is based on the displacement

uðx; z; tÞ ¼ u0ðx; tÞ � z
qw

qx
; v ¼ 0; wðx; z; tÞ ¼ wðx; tÞ (8)

where u0 and w denote the in-plane and transverse displacements, respectively. The non-zero strains of the
Euler–Bernoulli theory are

�xx ¼
qu0

qx
� z

q2w
qx2
¼ �0 þ zk; �0 ¼

qu0

qx
; k ¼ �

q2w
qx2

(9)

where e0 and k is the extensional strain and bending strain, respectively. The stress in the axial direction is
written as

sxx ¼
Efgm

1� n2fgm
; �xx ¼

Efgm

1� n2fgm
ð�0 þ zkÞ (10)

In the absence of thermal components due to the boundary condition, the axial force and the bending
moment resultants for a slender beam are expressed as [14]

ðN;MÞ ¼

Z h=2

�h=2

EðzÞfgm

1� nðzÞ2fgm
�0 � z

q2w

qx2

� �
ð1; zÞdz (11)

The relation between the force and moment resultants and the beam deformation is written as

N

M

� �
¼

Afgm Bfgm

Bfgm Dfgm

" #
�0

k

� �
(12)
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where Afgm, Bfgm, Dfgm are the in-plane, bending–stretching coupling, bending stiffness of the FGM beam,
respectively, and is written as [3]

ðAfgm;Bfgm;DfgmÞ ¼

Z h=2

�ðh=2Þ
ðQc �QmÞ

2zþ h

2h

� �n

ð1; z; z2Þ þQmð1; z; z
2Þ

� �
dz (13)

where Qc and Qm are the elastic stiffness of the FGM constituent material (viz. ceramic and metal).
The Euler–Lagrange equations in 0oxoL can be obtained as

qN

qx
þ f ¼ rA

q2u
qt2

(14)

q2M

qx2
þ q�

q
qx

N̄
qw

qx

� �
¼ rA

q2w

qt2
� rI

q4w
qx2 qt2

; 0oxoL (15)

The constitutive relation is given as

M ¼ Bfgm�0 þDfgmk (16)

Assuming that there is no in-plane displacement: u0 ¼ 0, M ¼ Dfgmk ¼ �Dfgm(q
2w/qx2). Substituting M in

Eq. (15), we have the governing equation as

�Dfgm
q4w
qx4
þ q�

q
qx

N̄
qw

qx

� �
¼ rA

q2w

qt2
� rI

q4w
qx2 qt2

; 0oxoL (17)
2.3. FGM beam on variable elastic foundation

For FGM beam on variable two-parameter elastic foundation [33], the governing equation can be expressed
as

�Dfgm
q4w

qx4
þ

q
qx

k1ðxÞ
qw

qx

� �
� kðxÞwþ rI

q4w
qx2 qt2

� rA
q2w
qt2
¼ 0; 0oxoL (18)

where k(x), k1(x) are Winkler foundation modulus and second parameter foundation modulus. For analysis of
the natural frequency, the above equation is formulated as an eigenvalue problem by assuming the following
periodic function:

wðx; tÞ ¼W ðxÞe�iot (19)

where W(x) is the mode shape of the transverse motion of the beam. Substituting Eq. (19) into Eq. (18) one
obtains

Dfgm
d4W

dx4
�

d

dx
k1ðxÞ

dW

dx

� �
þ kðxÞW � rIo2 d

2W

dx2
þ rAo2W ¼ 0; 0oxoL (20)
Fig. 1. FGM beam supported on variable two-parameter elastic foundation with simply supported–simply supported ends.
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2.4. FGSW beam on variable elastic foundation

A FGSW beam is considered (Fig. 3). The bottom face consists of FGM-I and the top face consists of
FGM-II. The core is assumed to be made up of Alporas foam. FGM-I consists of stainless steel and silicon
nitride while FGM-II consists of nickel and aluminum oxide. The sandwich beam is maintained in such a way
that one surface consists of pure ceramic and the other surface is of fully metal as shown by the shaded
diagram. The blackish and whitish shade indicates the presence of ceramic and metal, respectively.
The material properties of the constituent material are listed in Tables 1 and 2. The sandwich beam is
considered to be resting on variable Winkler foundation (viz. on linear, parabolic and sinusoidal Winkler
modulus). In this present case, the effect of second parameter modulus is neglected.
2.5. Temperature distribution

In the present analysis, FGM beam and FGSW beam are considered. The metal and the ceramic surfaces of the
beams are considered to be at different temperatures. The variation of temperatures is assumed to be in thickness
directional only. One-dimensional steady-state heat conduction along the beam thickness is considered. The
temperature distribution T ¼ T(z) is given by the following governing differential equation [32]:

d

dz
kT ðzÞ

dTðzÞ

dz

� �
¼ 0; Tðh=2Þ ¼ T2; Tð�h=2Þ ¼ T1 (21)
Fig. 2. Various distribution of Winkler elastic foundation along the axial direction: (a) linear type, (b) parabolic type and (c) sinusoidal

type.

k1(x)

k (x)

FGM-I

FGM-II

Core
x

Fig. 3. FGM sandwich beam supported on variable two-parameter elastic foundation with simply supported–simply supported ends.

Table 1

Mechanical and thermal properties of constituent materials of the FGM-I

Stainless steel (SUS304) Silicon nitride (Si3N4)

E n kT r E n kT r

P0 201.04� 109 0.3262 15.379 8166.0 348.43� 109 0.2400 13.723 2370

P�1 0 0 0 0 0 0 0 0

P1 3.079� 10�4 �2.002� 10�4 �1.264� 10�3 0 �3.070� 10�4 0 �1.032� 10�3 0

P2 �6.534� 10�7 3.797� 10�7 2.092� 10�7 0 2.160� 10�7 0 5.466� 10�7 0

P3 0 0 �7.223� 10�10 0 �8.946� 10�11 0 �7.876� 10�11 0
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Table 2

Mechanical and thermal properties of constituent materials of the FGM-II

Nickel Aluminium oxide (Al2O3)

E n kT r E n kT r

P0 223.95� 109 0.31 58.754 8908.0 349.55� 109 0.26 �14.087 3750.0

P�1 0 0 0 0 0 0 �1123.6 0

P1 �2.794� 10�4 0 �4.614� 10�4 0 �3.853� 10�4 0 �6.227� 10�3 0

P2 3.998� 10�9 0 6.670� 10�7 0 4.027� 10�7 0 0 0

P3 0 0 �1.523� 10�10 0 �1.673� 10�10 0 0 0
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where T2 and T1 are the temperature at the top surface and bottom surface, respectively. The solution of the
above equation is given in the following form [32]:

TðzÞ ¼ T1 1þ ðTr � 1Þ

Z z

�h=2

1

kðlÞ
dl

,Z h=2

�h=2

1

kðzÞ
dz

 !
(22)

Tr ¼
T2

T1

Tr is defined as the ratio of the top temperature surface to the bottom surface temperature.
2.6. DQM

In the DQM partial derivatives of a function with respect to a space variable at a given interpolation point is
approximated as a weighted linear summation of function values at all chosen interpolation points. Thus,
DQM transforms the governing differential equation into a set of equivalent simultaneous equations. This is
done by replacing the partial derivative with equivalent weighting coefficients. For example, the first partial
derivative is equivalent to a matrix [25]

q
qx
� ½A�x (23)

Similarly, second-, third- and fourth-order partial derivative are expressed as [25]

q2

qx2
� ½B�x ¼ ½A�x½A�x

q3

qx3
� ½C�x ¼ ½A�x½A�x½A�x

q4

qx4
� ½D�x ¼ ½A�x½A�x½A�x½A�x (24)

In the present analyses MDQM is employed. The true implementation of this MDQM
technique depends on how accurately the weighting coefficient matrix is computed and the distribution of
interpolation points. Unlike the GDQ method, in this modified method (MDQM), weighting
coefficients matrix of the first-order derivative is defined by a following matrix multiplication
operation [25]

½A�x � ½N
0
0�½N0�

�1 (25)
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where [N0] is a matrix developed from Chebyshev polynomials of first kind [29] and is defined as

N0 ðChebyshevÞ ¼

T1ðx1Þ T2ðx1Þ T3ðx1Þ � � � � � � Tn�1ðx1Þ Tnðx1Þ

T1ðx2Þ T2ðx2Þ T3ðx2Þ � � � � � � Tn�1ðx2Þ Tnðx2Þ

T1ðx3Þ T2ðx3Þ T3ðx3Þ � � � � � � Tn�1ðx3Þ Tnðx3Þ

..

. ..
. ..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

. ..
. ..

.

T1ðxn�1Þ T2ðxn�1Þ T3ðxn�1Þ � � � � � � Tn�1ðxn�1Þ Tnðxn�1Þ

T1ðxnÞ T2ðxnÞ T3ðxnÞ � � � � � � Tn�1ðxnÞ TnðxnÞ

2
66666666666664

3
77777777777775

(26)

where, x1, x2, x3,y, xn are the interpolation points in the computational domain. The components of the
Chebyshev polynomials T of first kind are defined as

T1ðxiÞ ¼ 1; T2ðxiÞ ¼ xi; T2ðxiÞ ¼ �1þ 2x2
i ; T3ðxiÞ ¼ �3xi þ 4x3

i . . . (27)

For choosing interpolation points, one simple way is to divide the computational domain into
equal spaces. However, Chen et al. [25] observed that uniform spacing among the interpolation
points did not resulted in accurate results. Pradhan and Murmu [29] found that accurate and stable results
are being obtained by employing Chebyshev–Gauss–Lobatto interpolation points. Thus, in the present
study, these interpolation points are being considered. Locations of these interpolations are determined
as follows:

xi ¼
1

2
1� cos

ði � 1Þp
ðn� 1Þ

� �
; i ¼ 1; 2; . . . ; n; 0pxip1 (28)

where n is the number of interpolation points. The governing differential equation for a uniform beam with
two-parameter elastic foundation is discretized by DQM as

Dfgm

Xn

j¼1

DijW j � ðk1Þi

Xn

j¼1

BijW j þ kiW i � rIo2
Xn

j¼1

BijW j þ rAo2W i ¼ 0; i; j ¼ 1; 2; . . . ; n (29)

where Bij, Dij are the components of matrix [B] and [D] matrices as expressed in Eq. (8). While imposing
various boundary conditions the MWCM approach [27] is employed. In MWCM approach, the boundary
conditions are being imposed during the computation of weighting coefficient matrix for inner interpolation
points. For simply supported–simply supported case w ¼ 0 at x ¼ 0 and x ¼ L. This leads to elements of first
and last columns being replaced by zeros:

Ai1 ¼ 0; Ain ¼ 0; i ¼ 1; 2; . . . ; n (30)

Thus, Aij is updated as Āij where i,j ¼ 1,2,y, n. The second-order weighting coefficients is thus written as

B̄ij ¼ AikĀkj ; i; j ¼ 1; 2; . . . ; n (31)

During the formulation of third-order derivative coefficient matrix for simply supported–simply supported
case, the boundary conditions, w00 ¼ 0 at x ¼ 0 and x ¼ L are implemented. Similarly, third- and fourth-order
weighting coefficients are computed as

C̄ij ¼ ĀikB̄kj

D̄ij ¼ AikC̄kj ; i; j ¼ 1; 2; . . . ; n (32)

The other types of boundary conditions are also implemented in the similar way. The equations are solved
for inner grid points. Thus, the differential quadrature analogous with appropriate boundary condition is
expressed as

Dfgm

Xn�1
j¼2

D̄ijW j � ðk1Þi

Xn�1
j¼2

B̄ijW j þ kiW i � rIo2
Xn�1
j¼2

B̄ijW j þ rAo2W i ¼ 0 i; j ¼ 2; . . . ; n� 1 (33)
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Eq. (33) with boundary condition consists of (n�2) by (n�2) matrix. The above equation can easily be
transformed into eigenvalue problem from where the natural frequencies for FGM beam are obtained:

½K�fW g ¼ o2fW g (34)

3. Results and discussion

3.1. Validation

3.1.1. Nonlinear variation of Winkler elastic foundation

A simply supported–simply supported isotropic beam resting on nonlinearly varying Winkler modulus is
considered. The Winkler elastic modulus is assumed to be varying in a parabolic manner, i.e. k ¼ k0 (1�xx2)
[19]. In this study, the value of parabolic variation parameter, x is varied from 0.2 to 0.8. Winkler elastic

constant k0 is assumed to be 2000. The non-dimensional vibration frequency b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAL4o2=EI

4

q
as presented

in Zhou [19] is computed for first three modes. First three vibration modes’ results are plotted in Figs. 4–6,
respectively. From these figures, one could observe that present MDQM results for the beam problem do
agree well with those reported Zhou [19].

3.1.2. Two-parameter elastic foundation

With the present MDQM, vibration response of a simply supported–simply supported isotropic beam
resting on two-parameter elastic foundation is computed. The second parameter modulus k1 is assumed to be
unity. While Winkler modulus is considered to vary from 10 to 100,000. The non-dimensional vibration
frequency ō ¼ oL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA=EI

p
for first mode is calculated and results are depicted in Fig. 7. From this figure,

one could observe that the present MDQM results for the beam analysis are in good agreement with those
reported by Matsunaga [22].

3.2. Convergence study

A FG beam (FGM-I) is assumed to be resting on a linearly varying Winkler elastic foundation. The metal-
rich surface of the beam is considered to be at room temperature. While the ceramic-rich surface of the FGM
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beam is maintained at 1500K (Fig. 1). Employing the present MDQM, vibration analysis is performed for
various power-law indices and with various numbers of interpolation points. The natural frequency versus
number of interpolation points for various power-law indices Rn are being plotted in Fig. 8. The results for the

natural frequencies are normalized to the form ō ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̄AL4o2

	
ĒI4

q
. Here, r̄ and Ē represent density and

elastic modulus, respectively, at room temperature and Rn ¼ 0. In this figure, one could notice that non-
dimensional frequency increases rapidly from 3 to 5 interpolation points. Furthermore, non-dimensional
frequency converges at 5 and more interpolation points. This trend is observed for power-law index varying
from 0.1 to 10. The computational work for the FGM and sandwich beams is conducted employing 11
interpolation points.
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3.3. Effect of variable Winkler elastic foundation

MDQM analysis is extended to a simply supported–simply supported FGM beam resting on Winkler elastic
foundation. The beam is assumed to be made up of FGM-I material as mentioned in Table 1. The FGM-I
beam consists of silicon nitride (Si3N4) and stainless steel (SUS304) materials, which are commonly used
materials for FGMs in the literature. The beam is considered to be resting on various Winkler elastic
foundations. These include linear-, parabolic- and sinusoidal-type variations along the axial direction (Fig. 2).

Effect of various parameters on the natural frequency is being studied. These parameters include (a)
different types of Winkler elastic foundation (Fig. 2), (b) temperature distributions along the thickness
direction (Fig. 1) and (c) power-law index Rn of FGM beam. The metal-rich surface of the FGM beam is
maintained at room temperature. While the ceramic-rich surface of the beam is exposed to 300, 500, 900 and
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1500K, respectively. The beam deformation is considered to be elastic in nature. The temperature-dependent
and spatially dependent material properties of the beam are assumed to vary through the thickness.
At constant thickness coordinate value, the temperature is considered to be same in the entire two-dimensional
plane.

The temperature variation along the thickness is computed as per Eqs. (21) and (22). The temperature
variation of FGM-I beam across the thickness is found to be almost same for the values of power-law indices
Rn, considered in the analysis. This behavior is found for various sets of top and bottom surface temperatures
considered. This is due to the fact that the ratio of thermal conductivities of these two materials of FGM-I is
close to unity. However, for high value of thermal conductivity ratio the temperature variations across the
thickness are significantly different with different Rn values.
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Figs. 9–11 show the variation of non-dimensional fundamental frequency versus power-law indices Rn for
various temperature distributions. The temperature distributions were due to application of different
temperatures on the purely ceramic surface. From these three figures, it is seen that the non-dimensional
fundamental frequency increases as the power-law indices Rn increase. This increase in frequency with power-
law index is attributed to the fact that silicon nitride has larger stiffness than that of stainless steel. When the
value of power-law index, Rn, is zero, FGM beam consists of only stainless steel. Thus, frequency value is least
when Rn is zero. With increase of Rn value, the more ceramic materials are included in the FGM beam.

Furthermore, the value of non-dimensional fundamental frequency increases rapidly for power-law indices
Rn varying from 0.1 to 2. While the frequency value increases marginally for power-law indices Rn varying
from 2 to 10. This is due to the fact that for power-law index varying from 0.1 to 2, more percentage of ceramic
material is present in the FGM beam. While for power-law index varying from 2 to 10 the FGM beam
becomes ceramic rich.

The non-dimensional fundamental frequency is also observed to change with application of high
temperature on the ceramic rich surface of the FGM beam (Fig. 1). With increase of temperature, the non-
dimensional fundamental frequencies decrease. This is because the material properties are dependent on
temperature (Eq. (3)). As higher temperature is applied on the ceramic-rich surface, the stiffnesses of the
constituent materials of FGM beam are decreased.

The variation of non-dimensional fundamental frequency with power-law indices Rn for linear, parabolic
and sinusoidal variations of Winkler foundation are plotted in Figs. 9–11, respectively. For all these three
cases, the frequencies decrease as the temperature increases. From Figs. 9 to 11, it is observed that non-
dimensional fundamental frequency versus power-law index Rn variation for all the three cases are similar in
nature. However, from Fig. 12, one could observe that non-dimensional fundamental frequencies for the
linear, parabolic and sinusoidal variations of Winkler foundation are significantly different. For this
comparative study, Rn and kmax are assumed to be 1 and 500, respectively. The value of fundamental
frequency increases with inclusion of elastic foundation. From this figure, it is found that parabolic variation
of the Winkler elastic foundation yielded larger non-dimensional frequency value as compared with linear and
sinusoidal variations. One could note that there is a rise in frequency values of FGM beam when the stiffness
of Winkler elastic foundation is more in one of the two boundaries.

Linear variation of the Winkler elastic foundation yielded larger non-dimensional frequency value as
compared with non-dimensional frequency value of sinusoidal variation. This is because the stiffness of linear
variation of the Winkler elastic foundation is more near one of the supports. While stiffness of sinusoidal
variation of the Winkler elastic foundation is more near the mid-span. From the present study, one could infer
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that parabolic variation of Winkler foundation should be employed for obtaining larger natural frequency in
the FGM beam design.

3.4. Effect of two-parameter elastic foundation

Vibration response of FGM beam resting on two-parameter elastic foundation is studied. The metal-rich
surface of the FGM beam (Fig. 1) is maintained at room temperature. While the ceramic-rich surface of the
beam is exposed to 300, 500, 900, 1100 and 1500K, respectively. The temperature-dependent and spatially
dependent material properties of the beam are assumed to vary through the thickness. At constant thickness
coordinate value, the temperature is assumed to be same in the entire two-dimensional plane.

Results of non-dimensional frequencies for various combinations of Winkler elastic modulus k and second
parameter k1 are listed in Tables 3 and 4. In present analysis, Winkler elastic modulus, k is assumed to be 10.
Second parameter elastic foundation modulus k1 is considered to be 2, 5, 10 and 50, respectively. Simply
supported–simply supported and clamped–simply supported boundary conditions are included in the
computation.

From Tables 3 and 4, one could observe that non-dimensional fundamental frequency increases with the
increase of power-law index Rn and decreases with increase of applied temperature. Non-dimensional
fundamental frequency also increases as one increase the second parameter elastic modulus k1. This is due to
the fact that stiffness of foundation contributes to the increase of non-dimensional fundamental frequency.
However, the influence of stiffness of Winkler elastic foundation on frequency is stronger as compared with
that of second parameter elastic foundation.

It is interesting to note that second parameter elastic modulus k1 has stronger effect on non-dimensional
fundamental frequency as compared with effects of power-law index and applied temperature. Thus, non-
dimensional fundamental frequency could be achieved with larger second parameter elastic modulus k1.
Furthermore, it is observed that power-law index Rn has stronger influence on fundamental frequency as
compared with applied temperature.

Furthermore, the effect of boundary conditions on the non-dimensional frequency of the FGM beam
supported on two-parameter elastic foundation is listed in Tables 3 and 4. Non-dimensional frequency of
FGM beam with clamped–simply supported boundary condition is found to be larger than that with simply
supported–simply supported boundary condition. However, effect of boundary condition is diminished when
high temperatures are applied on ceramic-rich top surface. From Tables 3 and 4, one could also observe that
non-dimensional frequency for clamped–simply supported boundary condition is 25% more than that of
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Table 3

Non-dimensional frequency for simply supported–simply supported boundary condition on two-parameter elastic foundation with

different temperatures of ceramic-rich surface of FGM beam (k ¼ 10)

k1 Rn Room temperature 300K 500K 900K 1100K 1500K

2 0.1 4.301 4.300 4.282 4.204 4.140 3.945

0.5 4.653 4.652 4.630 4.575 4.539 4.438

1 4.913 4.912 4.887 4.839 4.812 4.740

2 5.214 5.213 5.185 5.138 5.114 5.053

5 5.610 5.609 5.580 5.531 5.506 5.446

10 5.858 5.857 5.827 5.776 5.752 5.690

50 6.164 6.163 6.132 6.081 6.056 5.994

5 0.1 5.093 5.093 5.071 4.978 4.903 4.672

0.5 5.511 5.510 5.483 5.417 5.375 5.256

1 5.819 5.818 5.787 5.731 5.699 5.614

2 6.174 6.173 6.140 6.085 6.057 5.984

5 6.644 6.643 6.608 6.550 6.521 6.449

10 6.938 6.936 6.901 6.841 6.812 6.739

50 7.300 7.299 7.262 7.201 7.172 7.098

10 0.1 5.915 5.914 5.889 5.782 5.695 5.425

0.5 6.400 6.399 6.367 6.292 6.242 6.104

1 6.758 6.756 6.721 6.655 6.618 6.520

2 7.171 7.169 7.131 7.067 7.034 6.950

5 7.716 7.715 7.674 7.607 7.573 7.490

10 8.057 8.056 8.014 7.945 7.911 7.826

50 8.478 8.477 8.434 8.363 8.329 8.244

50 0.1 8.664 8.663 8.625 8.469 8.341 7.947

0.5 9.374 9.373 9.326 9.215 9.143 8.941

1 9.898 9.896 9.845 9.748 9.694 9.549

2 10.503 10.501 10.445 10.351 10.303 10.180

5 11.302 11.300 11.241 11.142 11.093 10.970

10 11.802 11.799 11.738 11.637 11.587 11.463

50 12.418 12.416 12.353 12.250 12.200 12.075
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simply supported–simply supported boundary condition. This is for the case when T, k1 and Rn are
considered to be 300, 2 and 0.1K, respectively. While this change is just 5% for T, k1 and Rn are considered to
be 1500, 50 and 50K, respectively. This infers that non-dimensional frequency is a strong function of
boundary condition at lower temperature, smaller values of k1 and smaller values of Rn. This is because of the
fact that clamped boundary condition provides more stiffness at lower temperature, smaller k1 and smaller Rn
values.
3.5. Effect of Rt on frequency of sandwich beam

Present computational work is extended to the FGSW beam. The bottom and top faces of the FGSW beam
are assumed to be of FGM-I and FGM-II, respectively. FGM-I consists of stainless steel and silicon nitride
while FGM-II consists of nickel and aluminum oxide. The material properties of the constituent materials of
FGM-I and FGM-II are listed in Tables 1 and 2. The core of the FGSW beam is Alporas foam. Young’s
modulus, Poisson’s ratio and density of Alporas foam are assumed to be 0.5GPa, 0.35 and 0.22 gm/cm3,
respectively. Thicknesses of top and bottom faces of FGSW beam are assumed to be identical. Non-
dimensional core thickness ratio, Rt, is defined as the ratio of core thickness to face thickness. The length to
thickness ratio is maintained more than 20 such that EBT is applicable [31]. Furthermore, the FGSW beam is
considered to be resting on variable Winkler foundation (viz. linear, sinusoidal and parabolic Winkler elastic
foundation). Temperatures at various locations of the FGSW beam are shown in Fig. 3. Three sets of applied
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Table 4

Non-dimensional frequency for clamped–simply supported boundary condition on two-parameter elastic foundation with different

temperatures of ceramic-rich surface of FGM beam (k ¼ 10)

k1 Rn Room temperature 300K 500K 900K 1100K 1500K

2 0.1 4.807 4.807 4.786 4.699 4.628 4.409

0.5 5.201 5.200 5.175 5.113 5.073 4.961

1 5.492 5.491 5.462 5.409 5.378 5.298

2 5.827 5.826 5.796 5.743 5.716 5.648

5 6.271 6.270 6.237 6.182 6.155 6.087

10 6.548 6.547 6.513 6.457 6.429 6.360

50 6.890 6.889 6.854 6.797 6.769 6.700

5 0.1 5.485 5.484 5.461 5.361 5.280 5.031

0.5 5.934 5.933 5.904 5.834 5.788 5.660

1 6.266 6.265 6.232 6.171 6.137 6.045

2 6.649 6.648 6.613 6.553 6.522 6.445

5 7.155 7.154 7.116 7.053 7.023 6.945

10 7.471 7.470 7.431 7.367 7.335 7.257

50 7.861 7.860 7.821 7.755 7.723 7.644

10 0.1 6.233 6.232 6.206 6.093 6.001 5.717

0.5 6.744 6.743 6.710 6.630 6.578 6.432

1 7.121 7.120 7.083 7.013 6.974 6.870

2 7.556 7.555 7.515 7.447 7.412 7.324

5 8.131 8.130 8.087 8.016 7.981 7.892

10 8.491 8.489 8.445 8.372 8.336 8.247

50 8.934 8.932 8.888 8.813 8.777 8.687

50 0.1 8.843 8.842 8.803 8.644 8.513 8.111

0.5 9.567 9.566 9.519 9.406 9.332 9.125

1 10.102 10.101 10.048 9.949 9.894 9.746

2 10.720 10.718 10.661 10.564 10.515 10.390

5 11.535 11.533 11.473 11.372 11.322 11.197

10 12.045 12.043 11.981 11.877 11.826 11.700

50 12.674 12.672 12.608 12.503 12.451 12.324
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temperatures (Fig. 3) are included in the present study viz. T (294–294–294), T (294–294–1500) and T

(294–1500–294). The number in the parenthesis denotes the temperature in Kelvin.
Effect of various parameters on the vibration response of FGSW beam is examined. These parameters

include (a) types of Winkler foundation (viz. linear, parabolic and sinusoidal variation, Fig. 2), (b) core
thickness ratio, Rt, (c) temperature variation along the thickness direction and (d) power-law index, Rn.

Frequency parameter is defined as c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oðrA=EIÞ2

4

q
.

Fig. 13 shows the variation of frequency parameter for various core thicknesses, Rt. Results related to first
five modes of vibration are shown in Fig. 13. The power-law index Rn for the present case is assumed to be
0.1. From this figure, one could observe that with increase in non-dimensional core thicknesses ratio, Rt,
frequency parameter decrease. This can be attributed to the fact that when the core thickness ratio increases,
the overall flexural rigidity of the FGSW beams increases. It should be noted that frequency parameter is
inversely proportional to flexural rigidity. Furthermore, it is interesting to note that this variation of Rt, and
frequency parameter for modes 1, 2 and 3 are almost linear in nature. While variation of Rt and frequency
parameter is nonlinear in nature for modes 4 and 5.

Fig. 14 shows the effect of power-law index Rn on frequency parameter for various core thicknesses ratios,
Rt. From this figure, one could note that with increase in core thicknesses ratios Rt frequency parameter
decreases for all power-law indices Rn. Rate of decrease is observed to be independent of applied Rn values.
As the Rn value increases the associated frequency parameter increases. When Rn ¼ 0, the FGSW beam
consists of purely ceramic top face, core and purely ceramic bottom face. With increase of Rn, more metal is
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included in the top and bottom faces. Thus, the effective stiffness of the FGSW beam is decreased. And hence
larger frequency parameter is observed with larger power-law index values.

Fig. 15 shows the effect of three different Winkler foundations (Fig. 2) on frequency parameter for various
core thickness ratios, Rt. For this investigation, Rn is assumed to be unity and same numerical value
(kmax ¼ 500) in linear, parabolic and sinusoidal variation of Winkler foundation (Fig. 2) is employed.
Furthermore, it is observed that parabolic variation of the Winkler elastic foundation yields larger frequency
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parameter value as compared with linear and sinusoidal variation. Furthermore, linear variation of the
Winkler elastic foundation yields larger frequency parameter value as compared with sinusoidal variation.
From these results, one could infer that parabolic variation should be employed for obtaining larger natural
frequency in the beam design.

Figs. 16 and 17 show the effect of three different temperature distributions on frequency parameter for
various core thickness ratios Rt. These results are for Rn ¼ 0.1 and 10, respectively. From these figures, one
could observe that the increase in the temperature of the core material increases the frequency parameter. It is
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observed that for the temperature variation of T (294–1500–294) profile imparts the highest frequency
parameter. This can be attributed to the fact that when high temperature is applied to core material, heat is
conducted to the top and bottom faces of FGSW beam. As a consequence, the effective stiffness of the FGSW
beam is reduced. This effect is more prominent with higher values power-law index Rn.

4. Conclusions

Using MDQM thermo-mechanical vibration analysis of FG beams and FGSW beams are presented.
Parametric study on the vibration response of FG beams and FGSW beams are being carried out. These
parameters include (i) temperature distributions, (ii) power-law index, (iii) variable Winkler foundation
modulus, (iv) two-parameter elastic foundation modulus and (v) normalized core thickness of FGSW beams.
Present results for the beam with Winkler and two-parameter elastic foundations do agree with those reported
in the literature. Non-dimensional fundamental frequency increase with increase in power-law index Rn. Also,
the frequency decreases as the temperature increases. Among linear, parabolic and sinusoidal variation of
Winkler foundation, parabolic variation should be employed for obtaining larger natural frequency in the
FGM beam design.

For two-parameter elastic foundation non-dimensional frequency increases with increase in second
parameter elastic modulus, power-law index and decreases with applied temperature. Second parameter elastic
modulus has stronger effect on natural frequency than power-law index and applied temperature. This infers
that natural frequency is a strongly influenced by boundary condition at lower temperature, smaller values of
k1 and smaller value of Rn.

For the FGSW beam, frequency parameter decreases with increase in core thicknesses ratios Rt for all
power-law indices Rn. Rate of decrease is observed to be independent of applied Rn values. Furthermore,
increase in the temperature of the core material increases the frequency parameter. This effect is more
prominent when power-law index Rn is order of 10.
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